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Merseburg, German Democratic Republic 
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Abstract. The path integral formulation of Brownian motion in an external force is 
reconsidered and a new representation is derived. 

Several authors (Wiegel 1986, Langouche et a1 1979) considered the formulation of 
the diffusion of a Brownian particle under an arbitrary force by means of path integrals. 
Their formulation, however, is not convenient for practical calculations. In this letter 
we will re-examine the approach of these authors and derive a new path-integral 
representation of the transition probability for a Brownian particle under an arbitrary 
external force. 

The probability density P ( x ,  t, 0,O) obeys the equation 

8,P = DoAP+ D , V , ( F ( x ) P )  (1)  

where Do is the diffusion coefficient and F ( x )  is the force. The transition probability 
P ( x ,  t, x’, t’) ( t  > t’) possesses the Markovian property 

P(x, t, 0,O) = d x ‘ P ( x ,  t, x’, t ‘ ) P ( x ‘ ,  t’, 0,O). (2) I 
I 

For small t -  t’, P ( x ,  1, x’, t’) is given by 

P ( x ,  t,  x’, t ’ )  = ddp exp(ip(x - x’) - i( t - t ’ ) h (  p ,  x’)) 

where the Hamiltonian h ( p ,  x’) is 

h ( p ,  x) = -iDop2-Dop”“F~(x) 

and d is the space dimension. 
After carrying out the integration over p in (3) we obtain 

P ( x ,  t, x’, t ’ )  

= ( 4 r ~ , ( t -  t ’ ) ) -d ’2  e x p ( - 1 / ( 4 ~ ~ ( t -  t ’ ) ) ( x - x ’ + ( t  - t ’ ) ~ ~ ~ ( x ‘ ) ) * ) .  ( 5 )  

In order to obtain the path-integral representation of the transition probability 
P ( x ,  t, 0, 0), we divide the interval (0, t )  in n intervals A t  = t / n  and use n - 1 times 
the formula (2). Using (3) and (4) leads respectively to the functional integral in the 
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phase space (Langouche et al 1979) and configurational space. The continuous rep- 
resentation of P ( x ,  t, 0,O) in the configurational space is 

Dx( t )  exp -( 1/4D0) dt’(x( t’) + D o F ( x (  t ’ ) ) ) 2  . (6) 1 x ( 1 ) = x  I ( Io1 P ( x ,  t ,  0,O) = 
x ( O f = O  

Equation (6) has to be understood as an abbreviation of the n-times integral. We 
notice that the force on the interval ( f k - , ,  t k )  must be taken at the beginning of the 
interval. The function P ( x ,  t, x’, t ‘ )  given by (5) obeys the equation 

a , ~  = Dod2P/dx2+ D $ , ( F ( x ’ ) P ) .  (7) 

With the aid of (6) and (7) one can show that P ( x ,  t, 0,O) obeys the equation (1). 

as follows 
One can come to the idea of transforming the cross-term in the exponential of (5) 

(8)  

where F ( x )  = d,U. This transform is legitimate in the function theory when x - x’ is 

( x  - x ’ ) F ( x ’ )  = U ( x )  - U ( x ’ )  

infinitesimal. Using (8) we can check that for small t - t’, P(x ,  t, x’, 
equation 

a,P= Do~2P/~x2+D$x(F(x)P)-(1/2)Dodiv F ( x ) P .  

To avoid the appearance of the last term in (9) instead of (5) we 
expression 

P ( x ,  t, x’, t ’ )  

= (4 . r r~,( t -  t ‘ ) ) - d ’ 2  e x p { - [ 1 / ( 4 ~ ~ ( t -  t ‘ ) ) ( x - x ’ ) ’  

-f( U ( X ) -  U ( x ’ ) ) - ; D o ( t -  t ’ )F(X’)2  

+;Do( t - t‘) div F ( x ‘ ) ] } .  

t’) will obey the 

(9) 

have to use the 

Therefore, we see that instead of (8) we must use the following formula: 

U ( x ) -  U ( x ’ ) = ( x - x ’ ) F ( x ‘ ) + D 0 ( t - t ‘ )  div F ( x ’ ) .  (11) 

We note that (1 1) reminds us of the Ito calculus of the stochastic variables (Gardiner 
1985). 

Analogous to the above the combination of (10) and (2) leads to the path integral 
representation of P ( x ,  t, 0,O) discussed by Wiegel (1986). 

Because the exponential in (6) is not linear in F ( x ) ,  the path integral (6) is not 
convenient for carrying out the perturbative calculations. In order to transform (6) 
we could use the discretised version of it and expand (6) in powers of the force. But 
the simplest way is to use the propagator method (Bjorken and Drell 1965). The 
differential equation (1) can be rewritten in an integral form as follows 

P ( x ,  t ,  0,O) = P,(x, t, 0,O) + Jo- dt’ J dx’Po(x, t, x’ ,  ~ ’ ) v , . D , F ( x ’ ) P ( x ’ ,  t ‘ ,  O,O) (12) 

where Po(x, t ,  0,O) is the Green function of the diffusion equation without the force. 
The iteration of (12) generates the perturbation expansion of P ( x ,  t, 0,O) in powers of 
the force. In each order of this expansion we go from the ordered time integration to 
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the symmetrical one. Thereafter it is easy to see that the perturbation expansion can 
be represented as 

P(x,t,O,O)= { x ( O ) = O  Dx(t)exp( -l /(4Do) {~‘dr‘x(c’)2+Do{o‘drr~.F,(x(r~))). (13) 

Equation (13) is a symbolic expression and has to be undertstood in the sense of the 
perturbation expansion. The derivative in the exponential of (13) acts not only on 
F(x(r’))  but also on the function that appears on the right of F. The second term in 
the exponential of (13) can be transformed to -Doji  dr’$*FP(x(r’)), where the nabla, 
vp,  acts on the left. 

The expression (13) is the main result of the present letter. Let us outline how it 
follows from ( 6 ) .  As we mentioned above, ( 6 )  has to be understood as an n-times 
integral with a definite prescription of the discretisation. The time integral in the 
exponential becomes a sum. We look for the Taylor expansion of the term 

x ( f ) = x  

C (xm-xm-l)F(xm-l)* 
m 

This term appears in combination with the function 

Po(xm -x , , -~ ,  A f )  = ( ~ T D ~ A ~ ) - ~ ’ *  exp(-1/(4DoAf)(x, - x ~ - ] ) ~ ) ,  

Both terms can be represented as follows: 

which agrees with (13). It is easy to see that the square of (14) with rn = n compensates 
for the term & , , F ( X ~ - ~ ) *  in the exponential of (6). An analogous consideration of 
high-order terms enables one to check that ( 6 )  and (13) are equivalent. 

In this letter we have derived a new path-integral representation for Brownian 
motion under an external force. It is remarkable that the exponential of (13) is linear 
in the force. The simplicity of (13) in comparison with ( 6 )  makes it more convenient 
for practical calculations, especially for the perturbative ones. Equation (13) is con- 
venient in the case when the force is a stochastic one and the average over it is necessary. 

Assuming that the distribution of the random force FC”(x)  is given by the Gauss 
law with the correlation function 

(F’”(x)F”(x’))  = C’”(X-x’) 

we obtain from (13) 

P(x, f ,  0,O) = { X ( t ) = X  

x(O)=O 
Dx(t)  exp( -1/(4D0) jo‘ dt’x(t‘)’++ u p ( q ) u ’ ( - q ) C L ” ( q ) )  

(15) 

where a”“()  = Do!: dt’$!& eiqx(“) and 5q=jddq/(2a)d.  The exact linearity of the 
exponential of (13) in F enabled us to carry out the average over the random force. 
Equation (15) enables one to investigate the random walk in a random environment. 
It is easy to see that the perturbation expansion of (15) in powers of C””(q)  can be 
represented by means of diagrams. Equation (15) can be considered as an alternative 
to the (field-theoretic) methods used by Fisher (1984), Fisher er a1 (1985), Kravtsov 
et a1 (1989, and Honkonen and Karjalainen (1988). 
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The application of (15) to the study of the drift of a Brownian particle in a random 
environment when an additional constant force acts on the particle is in work (Stepanow 
1990). In this case we have to exchange k( t )  in (15) in accordance to (6) by x( t )  + DOE 
The using of (15) enables one to avoid the replica trick in calculating the mean square 
displacement of the Brownian particle in a random environment. 

An interesting application of (13) and (1 5), which is currently under study, is the 
diffusion of a polymer chain in a random environment. A similar problem has been 
addressed by Muthukumar and Baumgartner (1989) with the aid of Monte Carlo 
simulations. 

We wish to thank Professor G Helmis for stimulating discussions. 
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